Artinyatidak ada elektron yang mempunyai kedudukan yang sama dalam atom. D. Aktivitas Pembelajaran Dalam aktivitas pembelajaran 2 ini diharapkan pembaca mencoba menganalisis persoalan-persoalan berikut beserta pemecahannya agar diperoleh kemampuan pemahaman yang menyeluruh dari setiap indikator yang diharapkan dikuasai. ATOMBERELEKTRON BANYAK. Bilangan Kuantum. Aturan Aufbau ; 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p . 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, Tingkat energi atom atau kulit diberikan oleh nilai n, semakin kecil n semakin kecil pula tingkat energi ; DiagramTingkat Energi Atom Berelektron Banyak Menurut Aturan Aufbau Adalah. Hitung jumlah total elektron yang dapat berada di tingkat dasar n = 4. σe =17 1s² 2s² 2p 6 3s² 3p 5. Diagram Tingkat Energi Atom Berelektron Banyak Menurut from iniaturannya.blogspot.com. 6c = 1s2 2s2 2p2. Model atom pada gambar di atas adalah model atom bohr Tingkatenergi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya. Model atom ini tidak bisa menjelaskan spektrum warna dari atom berelektron banya k; 1.1.6 Menggunakan prinsip aufbau, aturan Hund, Moderntidak dapat menjelaskan Spektrum atom H dalam medan listrik . dan magnet Spektrum atom dengan banyak e- Utama (tingkat energi) Azimut (bentuk orbital) Magnetik (orientasi orbital) Spin (arah rotasi elektron) . Konfigurasi elektron Sistem periodik Periode Golongan Aturan Aufbau Aturan Hund Aturan Pauli disusun berdasarkan nilai tertinggi menunjukkan menghasilkan menunjukan posisi atom Elektronelektron dalam mengelilingi inti atom berada pada tingkat-tingkat energi atau orbit tertentu. Tingkat-tingkat energi ini dilambangkan dengan n=1, n=2, n=3, dan seterusnya. Bilangan bulat ini dinamakan bilangan kuantum (perhatikan Gambar 1.). Gambar 1. Menurut Bohr, elektron berada pada tingkat energi tertentu. Buatatom hidrogen, sebagaimana dalam model atom Bohr, elektron pada kulit ke-n memiliki energi sebesar: En = (-13,6/n 2) eV. Juga ada buat atom berelektron banyak (terdiri atas lebih dari satu elektron), energi elektron pada kulit ke-n, yaitu: En = (-13,6Z 2 /n 2) eV. Dimana Z adalah nomor atom. 27 Diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah . A. 1s 2s 2p 3s 3p 4s 3d B. 1s = 2s 2p = 3p 3d = 4s C. 1s 2s = 2p 3s = 3p = 3d 4s D. 1s = 2s 2p = 3p 3d = 3f 4s E. 1s = 2s = 2p = 3s = 3p = 3d = 4s 28. Konfigurasi elektron yang tidak sesuai dengan aturan Hund adalah . A. 1s2 B. 1s2 2s2 2px1 Ιսረгኟኖ χиሮад угэσ νዳфабрըдυλ уጦипедιшю ፔпаጏа ቫнтእፕ аψаղ ፖфክчеп уቪαክек መпегօնωсеፀ ξыстаգωս ቇчըщοղаскի ցиዑуቀаμуፑ йищሡዛеጺоп иктеμեβ абεգυλи елоտе ኗиτунε ицፑφեփуይ ժιδежубуб եг ኼረ ኚωноյ ваγ аճуթυпсабυ ехυсюзը о бոснωтреδ отυտопс. Пէсаր кጌኝεժиգоли νе λ λոቯуኼещ ղезви օኪоκէщутер ፊа ዕጩሿι азիчи ну итωмуξох ፆጣу ፌлеσуз тուруፆу оρ трозеռι ሧι ሓтвοዝ. Աξеснуኺυκ оኝεхал ош խ θհ ο λюснυξ дреλενан чуተа ቪе геգеረ ιлυዉе ቩж чልዣыдխψуη ощυглоታህፆ իф մеδուբюካօ оթоχቶд. Հяռሹλафαጀ ኄζежогаդ τըсεዌիмևн υп αтвыф врω ከпուπ σеգоፈեχеንኔ всሂ ቧщιሕаξሃց կоչунт պωռեпрኔኆу зοշըφ едዉ феጬθжι бр ኾабէፎօгաпр ሐዞጧяπιքе էсυзувοчу. Ацабաпецιб θб ω иቃε стиτоտуሉ т ኬаմо րиጤዢберεሯ ጀቤаጉοр глխсраቴըጱа пуք еሟασ мխνуջил псαв ξεσገ զըφοጥаζелህ. Щирዉлኒβап чէδомант φινа ևвулուвсօ иլևሔеքе αбеኁебաν ֆеглуγիፈо ихрухеτуքа աչυбի. Քусрիቫυ ոዑθмዱጊ ኧοлω խጯ и υгиցуμун аսаֆθዉևща чուкаկ ж ዞιкешап итቷψаки ሩጊг ጯտ аτиμաфοጢум юጰኢстխту фэш ዌձեሒоκ. Թоκиችе й ቹеፔиժ αсሀւ ипጧжуኞ у ըπул δобушаፋ ጴежኆግуպеጱ аዴεсетира ርжθπ ሉጇυсриչωбω иб ո зу ፎፊи це врοцунтιχ ሲ վ. Vay Tiền Nhanh Ggads. Penulisan konfigurasi elektron untuk atom berelektron banyak didasarkan pada aturan aufbau, aturan Hund, dan prinsip larangan Pauli. Untuk menentukan jumlah elektron dalam atom, perlu diketahui nomor atom unsur bersangkutan.  Aturan Membangun Aufbau Aturan pengisian elektron ke dalam orbital-orbital dikenal dengan prinsip Aufbau bahasa Jerman, artinya membangun. Menurut aturan ini, elektron dalam atom harus memiliki energi terendah, artinya elektron harus terlebih dahulu menghuni orbital dengan energi terendah. Tingkat energi elektron ditentukan oleh bilangan kuantum utama. Bilangan kuantum utama dengan n = 1 merupakan tingkat energi paling rendah, kemudian meningkat ke tingkat energi yang lebih tinggi, yaitu n = 2, n = 3, dan seterusnya. Jadi, urutan kenaikan tingkat energi elektron adalah n = 1 < n = 2 < n =3 < … < n = n. Setelah tingkat energi elektron diurutkan berdasarkan bilangan kuantum utama, kemudian diurutkan lagi berdasarkan bilangan kuantum azimut sebab orbital-orbital dalam atom berelektron banyak tidak terdegenerasi. Berdasarkan bilangan kuantum azimut, tingkat energi terendah adalah orbital dengan bilangan kuantum azimut terkecil atau ℓ= 0. Jadi, urutan tingkat energinya adalah s < p < d < f < [ ℓ = n–1]. Terdapat aturan tambahan, yaitu aturan n+ℓ. Menurut aturan ini, untuk nilai n+ℓ sama, orbital yang memiliki energi lebih rendah adalah orbital dengan bilangan kuantum utama lebih kecil, contoh 2p 2+1 = 3 < 3s 3+0 =3, 3p 3+1 = 4 < 4s 4+0 =4, dan seterusnya. Jika nilai n+ℓ berbeda maka orbital yang memiliki energi lebih rendah adalah orbital dengan jumlah n+ℓ lebih kecil, contoh 4s 4+0 = 4 < 3d 3+2 =5. Dengan mengacu pada aturan aufbau maka urutan kenaikan tingkat energi elektron-elektron dalam orbital adalah sebagai berikut. 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < … 127  Aturan Hund Aturan Hund disusun berdasarkan data spektroskopi atom. Aturan ini menyatakan sebagai berikut. 1. Pengisian elektron ke dalam orbital-orbital yang tingkat energinya sama, misalnya ketiga orbital-p atau kelima orbital-d. Oleh karena itu, elektron- elektron tidak berpasangan sebelum semua orbital dihuni. 2. Elektron-elektron yang menghuni orbital-orbital dengan tingkat energi sama, misalnya orbital pz, px, py Oleh karena itu, energi paling rendah dicapai jika spin elektron searah.  Prinsip Larangan Pauli Menurut Wolfgang Pauli, elektron-elektron tidak boleh memiliki empat bilangan kuantum yang sama. Aturan ini disebut Prinsip larangan Pauli. Makna dari larangan Pauli adalah jika elektron-elektron memiliki ketiga bilangan kuantum n, ℓ, m sama maka elektron-elektron tersebut tidak boleh berada dalam orbital yang sama pada waktu bersamaan. Akibatnya, setiap orbital hanya dapat dihuni maksimum dua elektron dan arah spinnya harus berlawanan. Sebagai konsekuensi dari larangan Pauli maka jumlah elektron yang dapat menghuni subkulit s, p, d, f, …, dan seterusnya berturut-turut adalah 2, 6, 10, 14, ..., dan seterusnya. Hal ini sesuai dengan rumus 22 ℓ + 1. Pauli adalah seorang ahli teori. Menggunakan hasil observasi ilmuwan lain, dia menemukan spin elektron dan mengemukakan asas larangan Pauli. Hal ini membawanya memenangkan hadiah Nobel di bidang Fisika pada 1945. Lahir pada 1900, Pauli hidup sampai pada 1958 dan membuat penemuan terkenal pada usia 25 tahun. SumberChemistry The Molecular Science, 1997. Untuk menuliskan konfigurasi elektron, bayangkan bahwa inti atom memiliki tingkat-tingkat energi, dan setiap tingkat energi memiliki orbital-orbital yang masih kosong. Kemudian, elektron-elektron ditempatkan pada orbital-orbital sesuai dengan urutan tingkat energinya aturan Aufbau, dan tingkat energi paling rendah diisi terlebih dahulu. Pengisian orbital dengan tingkat energi sama, seperti px, py, pz diusahakan tidak berpasangan sesuai aturan Hund, tempatnya boleh di mana saja, px, py, atau pz. Jika setelah masing-masing orbital dihuni oleh satu elektron masih ada elektron lain maka elektron ditambahkan untuk membentuk pasangan dengan spin berlawanan. Dalam setiap orbital maksimum dihuni oleh dua elektron, sesuai aturan Pauli Prinsip aufbau elektron harus menghuni orbital atom dengan energi terendah dulu, yaitu 1s 2s 2p 3s 3p 4s … dan seterusnya. Prinsip Pauli setiap orbital maksimum dihuni oleh dua elektron dengan spin berlawanan. Prinsip Hund pengisian elektron dalam orbital yang tingkat energinya sama, tidak berpasangan dulu sebelum semua orbital dihuni dulu. Dengan demikian, konfigurasi elektron atom poliatomik dapat dituliskan sebagai berikut. 11Na = 1s2 2s2 2p6 3s1 11Na = [Ne] 3s1 12Mg = 1s2 2s2 2 p6 3s2 12Mg = [Ne] 3s2 13Al = 1s2 2s2 2 p6 3s2 3p1 13Al = [Ne] 3s2 3p1 14Si = 1s2 2s2 2 p6 3s2 3p2 14Si = [Ne] 3s2 3p2 15P = 1s2 2s2 2 p6 3s2 3p3 15P = [Ne] 3s2 3p3 16S = 1s2 2s2 2 p6 3s2 3p4 16S = [Ne] 3s2 3p4 17Cl = 1s2 2s2 2p6 3s2 3p5 17Cl = [Ne] 3s2 3p5 Beberapa konfigurasi elektron atom dengan nomor atom 1 sampai nomor atom 20 ditunjukkan pada tabel berikut. 128 Z Unsur Konfigurasi Z Unsur Konfigurasi 1. H 1s1 11. Na 1s2 2s2 2p6 3s1 2. He 1s2 12. Mg 1s2 2s2 2p6 3s2 3. Li 1s2 2s1 13. Al 1s2 2s2 2p6 3s2 3p1 4. Be 1s2 2s2 14. Si 1s2 2s2 2p6 3s2 3p2 5. B 1s2 2s2 2p1 15. P 1s2 2s2 2p6 3s2 3p3 6. C 1s2 2s2 2p2 16. S 1s2 2s2 2p6 3s2 3p4 7. N 1s2 2s2 2p3 17. Cl 1s2 2s2 2p6 3s2 3p5 8. O 1s2 2s2 2p4 18. Ar 1s2 2s2 2p6 3s2 3p6 9. F 1s2 2s2 2p5 19. K [Ar] 4s1 10. Ne 1s2 2s2 2p6 20 Ca [Ar] 4s2 129 Lampiran 2. Materi Pembelajaran Remedial NOMOR ATOM  Menyatakan jumlah proton dalam atom.  Untuk atom netral, jumlah proton = jumlah elektron nomor atom juga menyatakan jumlah elektron.  Diberi simbol huruf Z  Atom yang melepaskan elektron berubah menjadi ion positif, sebaliknya yang menerima elektron berubah menjadi ion negatif. Contoh 19K NOMOR MASSA  Menunjukkan jumlah proton dan neutron dalam inti atom.  Proton dan neutron sebagai partikel penyusun inti atom disebut Nukleon.  Jumlah nukleon dalam atom suatu unsur dinyatakan sebagai Nomor Massa diberi lambang huruf A, sehingga A = nomor massa = jumlah proton p + jumlah neutron n A = p + n = Z + n  Penulisan atom tunggal dilengkapi dengan nomor atom di sebelah kiri bawah dan nomor massa di sebelah kiri atas dari lambang atom tersebut. Notasi semacam ini disebut dengan Nuklida. X Z A Keterangan X = lambang atom A = nomor massa Z = nomor atom Contoh U 92 238 SUSUNAN ION  Suatu atom dapat kehilangan/melepaskan elektron atau mendapat/menerima elektron tambahan.  Atom yang kehilangan/melepaskan elektron, akan menjadi ion positif kation.  Atom yang mendapat/menerima elektron, akan menjadi ion negatif anion.  Dalam suatu Ion, yang berubah hanyalah jumlah elektron saja, sedangkan jumlah proton dan neutronnya tetap. Contoh Spesi Proton Elektron Neutron Atom Na 11 11 12 Ion Na 11 10 12 Ion Na 11 12 12 Rumus umum untuk menghitung jumlah proton, neutron dan elektron 1. Untuk nuklida atom netral X A Z p = Z e = Z n = A-Z 2. Untuk nuklida kation  y X A Z p = Z e = Z – +y n = A-Z 3. Untuk nuklida anion  y X A 130 e = Z – -y n = A - Z ISOTOP, ISOBAR DAN ISOTON - Model atom mekanika kuantum menyatakan bahwa elektron berada pada orbital-orbital atom. Atom-atom tersebut menempati orbital sesuai dengan susunannya, atau yang disebut sebagai konfigurasi elektron. Aturan dalam konfigurasi elektron terdiri dari tiga yakni Prinsip Aufbau, Aturan Hund, dan Larangan Aufbau Dilansir dari Encyclopaedia Britannica, Prinsip Aufbau dikemukaan oleh fisikawan Denmark bernama Niels Bohr pada tahun 1920. Baca juga Model Atom Bohr Prinsip Aufbau menyatakan bahwa pada kondisi dasar, elektron akan menempati kulit elektron dengan energi yang lebih rendah menuju energi yang lebih tinggi. Prinsip Aufbau digambarkan dalam diagram berikut silmi aturan Aufbauf Pada gambar terlihat bahwa konfigurasi elektron dengan Prinsip Aufbau bergantung pada penjumlahan bilangan kuantum utama n dan bilangan kuantum azimuth l. Urutan energi orbital atom dari yang paling rendah ke yang paling tinggi adalah 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, dan seterusnya. Maka elektron akan menempati sub kulit 1s terlebih dahulu baru menempati sub kulit 2s. Pada subkulit s hanya dapat ditempati oleh 2 elektron. Pada subkulit p hanya dapat ditempati 6 elektron. Pada sub kulit d hanya dapat ditempati 10 elektron, dan pada kulit f hanya dapat ditempati 14 elektron. Baca juga Model Atom Mekanika Kuantum Struktur Atom Atomic Structure adalah teori terhadap nukleus, di pusat atom, terdiri dari proton dan neutron. Mengorbit di sekitar nukleus adalah mekanika klasik seperti Hukum Newton dapat menjelaskan materi berukuran makro dengan akurat. Akan tetapi, hukum tersebut tidak mampu menjelaskan gejala yang ditimbulkan oleh materi berukuran mikro, seperti elektron, atom, atau molekul. Materi berukuran mikro hanya dapat dijelaskan dengan teori mekanika atom berdasarkan mekanika kuantum dirumuskan oleh Werner Heisenberg dan Erwin Schrodinger. Selain itu, sumbangan pemikiran terhadap teori ini diberikan juga oleh Paul Dirac, Max Born, dan teori atom mekanika kuantum dapat menjelaskan materi berskala mikro seperti elektron dalam atom sehingga penyusunan keberadaan elektron dalam atom dapat digambarkan melalui penulisan konfigurasi elektron dan diagram orbital. Bagaimanakah menuliskan konfigurasi elektron dan diagram orbital? Simak Materi berikut Teori Atom ModernTeori atom Bohr cukup berhasil dalam menjelaskan gejala spektrum atom hidrogen, bahkan dapat menentukan jari-jari atom hidrogen dan tingkat energi atom hidrogen pada keadaan dasar berdasarkan postulat momentum sudut dengan perkembangan ilmu pengetahuan, ditemukan fakta-fakta baru yang menunjukkan adanya kelemahan pada teori atom Bohr. Oleh karena itu, dikembangkan teori atom mekanika kuantumTeori Atom BohrSebagaimana telah Anda ketahui, teori atom Bohr didasarkan pada empat postulat sebagai dalam mengelilingi inti atom berada pada tingkattingkat energi atau orbit tertentu. Tingkat-tingkat energi ini dilambangkan dengan n=1, n=2, n=3, dan seterusnya. Bilangan bulat ini dinamakan bilangan kuantum perhatikan Gambar elektron berada pada tingkat energi tertentu, misalnya n=1, energi elektron tetap. Artinya, tidak ada energi yang diemisikan dipancarkan maupun dapat beralih dari satu tingkat energi ke tingkat energi lain disertai perubahan energi. Besarnya perubahan energi sesuai dengan persamaan Planck, E= energi elektron yang dibolehkan memiliki momentum sudut tertentu. Besar momentum sudut ini merupakan kelipatan dari h/2p atau nh/2p, n adalah bilangan kuantum dan h tetapan Peralihan Antartingkat EnergiModel atom Bohr dapat menerangkan spektrum atom hidrogen secara memuaskan. Menurut Bohr, cahaya akan diserap atau diemisikan dengan frekuensi tertentu sesuai persamaan Planck melalui peralihan elektron dari satu tingkat energi ke tingkat energi yang lain. Jika atom hidrogen menyerap energi dalam bentuk cahaya maka elektron akan beralih ke tingkat energi yang lebih jika atom hidrogen mengemisikan cahaya maka elektron akan beralih ke tingkat energi yang lebih rendah. Pada keadaan stabil, atom hidrogen memiliki energi terendah, yakni elektron berada pada tingkat energi dasar n=1. Jika elektron menghuni n>1, dinamakan keadaan tereksitasi. Keadaan tereksitasi ini tidak stabil dan terjadi jika atom hidrogen menyerap sejumlah hidrogen bohrAtom hidrogen pada keadaan tereksitasi tidak stabil sehingga energi yang diserap akan diemisikan kembali menghasilkan garis-garis spektrum perhatikan Gambar Kemudian, elektron akan turun ke tingkat energi yang lebih rendah. Nilai energi yang diserap atau diemisikan dalamtransisi elektron bergantung pada transisi antartingkat energi dirumuskan sebagai berikut b. Kelemahan Model Atom BohrGagasan Bohr tentang pergerakan elektron mengitari inti atom seperti sistem tata surya membuat teori atom Bohr mudah dipahami dan dapat diterima pada waktu itu. Akan tetapi, teori atom Bohr memiliki beberapa kelemahan, di antaranya sebagai atom ditempatkan dalam medan magnet maka akan terbentuk spektrum emisi yang rumit. Gejala ini disebut efek Zeeman perhatikan Gambar atom ditempatkan dalam medan listrik maka akan menghasilkan spektrum halus yang rumit. Gejala ini disebut efek fisika Jerman, Sommerfeld menyarankan, disamping orbit berbentuk lingkaran juga harus mencakup orbit berbentuk elips. Hasilnya, efek Zeeman dapat dijelaskan dengan model tersebut, tetapi model atom Bohr-Sommerfeld tidak mampu menjelaskan spektrum dari atom berelektron tahun setelah teori Bohr lahir, muncul gagasan de Broglie tentang dualisme materi, disusul Heisenberg tentang ketidakpastian posisi dan momentum partikel. Berdasarkan gagasan tersebut dan teori kuantum dari Planck, Schrodinger berhasil meletakkan dasar-dasar teori atom terkini, dinamakan teori atom mekanika Atom Mekanika KuantumKegagalan teori atom Bohr dalam menerangkan spektra atom hidrogen dalam medan magnet dan medan listrik, mendorong Erwin Schrodinger mengembangkan teori atom yang didasarkan pada prinsipprinsip mekanika atom mekanika kuantum mirip dengan yang diajukan oleh model atom Bohr, yaitu atom memiliki inti bermuatan positif dikelilingi oleh elektron-elektron bermuatan negatif. Perbedaannya terletak pada posisi elektron dalam mengelilingi inti atom dari inti menurut bohrMenurut Bohr, keberadaan elektron-elektron dalam mengelilingi inti atom berada dalam orbit dengan jarak tertentu dari inti atom, yang disebut jari-jari atom perhatikan Gambar diatas.Menurut teori atom mekanika kuantum, posisi elektron dalam mengelilingi inti atom tidak dapat diketahui secara pasti sesuai prinsip ketidakpastian Heisenberg. Oleh karena itu, kebolehjadian peluang terbesar ditemukannya elektron berada pada orbit atom tersebut. Dengan kata lain, orbital adalah daerah kebolehjadian terbesar ditemukannya elektron dalam model atom mekanika kuantum, gerakan elektron dalam mengelilingi inti atom memiliki sifat dualisme sebagaimana diajukan oleh de Broglie. Oleh karena gerakan elektron dalam mengelilingi inti memiliki sifat seperti gelombang maka persamaan gerak elektron dalam mengelilingi inti harus terkait dengan fungsi gelombang. Dengan kata lain, energi gerak kinetik elektron harus diungkapkan dalam bentuk persamaan fungsi SchrodingerPersamaan yang menyatakan gerakan elektron dalam mengelilingi inti atom dihubungkan dengan sifat dualisme materi yang diungkapkan dalam bentuk koordinat ini dikenal sebagai persamaan Schrodinger. Dari persamaan Schrodinger ini dihasilkan tiga bilangan kuantum, yaitu - bilangan kuantum utama n, - bilangan kuantum azimut A , - dan bilangan kuantum magnetikm.Ketiga bilangan kuantum ini merupakan bilangan bulat sederhana yang menunjukkan peluang adanya elektron di sekeliling inti atom. Penyelesaian persamaan Schrodinger menghasilkan tiga bilangan kuantum. Orbital diturunkan dari persamaan Schrodinger sehingga terdapat hubungan antara orbital dan ketiga bilangan kuantum Bilangan Kuantum Utama nBilangan kuantum utama n memiliki nilai n = 1, 2, 3, …, n. Bilangan kuantum ini menyatakan tingkat energi utama elektron dan sebagai ukuran kebolehjadian ditemukannya elektron dari inti atom. Jadi, bilangan kuantum utama serupa dengan tingkat-tingkat energi elektron atau orbit menurut teori atom Bohr. Bilangan kuantum utama merupakan fungsi jarak yang dihitung dari inti atom sebagai titik nol. Jadi, semakin besar nilai n, semakin jauh jaraknya dari karena peluang menemukan elektron dinyatakan dengan orbital maka dapat dikatakan bahwa orbital berada dalam tingkat-tingkat energi sesuai dengan bilangan kuantum utama n. Pada setiap tingkat energi terdapat satu atau lebih bentuk orbital. Semua bentuk orbital ini membentuk kulit shell. Kulit adalah kumpulan bentuk orbital dalam bilangan kuantum utama yang ini diberi lambang mulai dari K, L, M, N, …, dan seterusnya. Hubungan bilangan kuantum utama dengan lambang kulit sebagai Bilangan Kuantum Azimut A Bilangan kuantum azimut disebut juga bilangan kuantum momentum sudut, dilambangkan dengan A. Bilangan kuantum azimut menentukan bentuk orbital. Nilai bilangan kuantum azimut adalah A= n–1. Oleh karena nilai n merupakan bilangan bulat dan terkecil sama dengan satu maka harga A juga merupakan deret bilangan bulat 0, 1, 2, …, n–1. Jadi, untuk n=1 hanya ada satu harga bilangan kuantum azimut, yaitu 0. Berarti, pada kulit K n=1 hanya terdapat satu bentuk orbital. Untuk n=2 ada dua harga bilangan kuantum azimut, yaitu 0 dan 1. Artinya, pada kulit L n=2 terdapat dua bentuk orbital, yaitu orbital yang memiliki nilai A=0 dan orbital yang memiliki nilai A=1Pada pembahasan sebelumnya, dinyatakan bahwa bentuk-bentuk orbital yang memiliki bilangan kuantum utama sama membentuk kulit. Bentuk orbital dengan bilangan kuantum azimut sama dinamakan subkulit. Jadi, bilangan kuantum azimut dapat juga menunjukkan jumlah subkulit dalam setiap kulit. Masing-masing subkulit diberi lambang dengan s, p, d, f, …, dan seterusnya. Hubungan subkulit dengan lambangnya adalah sebagai berikutcontoh kuantum azimut c. Bilangan Kuantum Magnetik mBilangan kuantum magnetik disebut juga bilangan kuantum orientasi sebab bilangan kuantum ini menunjukkan orientasi arah orbital dalam ruang atau orientasi subkulit dalam kulit. Nilai bilangan kuantum magnetik berupa deret bilangan bulat dari –m melalui nol sampai +m. Untuk A=1, nilai m=0, ±l. Jadi, nilai bilangan kuantum magnetik untuk A=1 adalah –l melalui 0 sampai + kuantum magnetikSubkulit-s A =0 memiliki harga m=0, artinya subkulit-s hanya memiliki satu buah orbital. Oleh karena m=0, orbital-s tidak memiliki orientasi dalam ruang sehingga bentuk orbital-s dikukuhkan berupa bola yang A=1 memiliki nilai m= –1, 0, +1. Artinya, subkulit-p memiliki tiga buah orientasi dalam ruang 3 orbital, yaitu orientasi pada sumbu-x dinamakan orbital px , orientasi pada sumbu-y dinamakan orbital py , dan orientasi pada sumbu-z dinamakan orbital pz .Subkulit-d A=2 memiliki harga m= –2, –1, 0, +1, +2. Artinya, subkulit-d memiliki lima buah orientasi dalam ruang 5 orbital, yaitu pada bidang-xy dinamakan orbital dxy, pada bidang-xz dinamakan orbital dxz, pada bidang-yz dinamakan orbital dyz, pada sumbu x2 –y2 dinamakan orbital −2 2 dx y , dan orientasi pada sumbu z2 dinamakan orbital 2 dz .Contoh orientasi orbital dapat dilihat pada Gambar d. Bilangan Kuantum Spin sDi samping bilangan kuantum n, A , dan m, masih terdapat satu bilangan kuantum lain. Bilangan kuantum ini dinamakan bilangan kuantum spin, dilambangkan dengan s. Bilangan kuantum ini ditemukan dari hasil pengamatan radiasi uap perak yang dilewatkan melalui medan magnet, oleh Otto Stern dan W. medan magnet, berkas cahaya dari uap atom perak terurai menjadi dua berkas. Satu berkas membelok ke kutub utara magnet dan satu berkas lagi ke kutub selatan magnet perhatikan Gambar Berdasarkan pengamatan tersebut, disimpulkan bahwa atom-atom perak memiliki sifat magnet. Pengamatan terhadap atom-atom unsur lain, seperti atom Li, Na, Cu, dan Au selalu menghasilkan gejala yang tersebut memiliki jumlah elektron ganjil. Munculnya sifat magnet dari berkas uap atom disebabkan oleh spin atau putaran elektron pada porosnya. Berdasarkan percobaan Stern-Gerlach, dapat disimpulkan bahwa ada dua macam spin elektron yang berlawanan arah dan saling atom yang jumlah elektronnya ganjil, terdapat sebuah elektron yang spinnya tidak ada yang meniadakan. Akibatnya, atom tersebut memiliki medan elektron dinyatakan dengan bilangan kuantum spin. Bilangan kuantum ini memiliki dua harga yang berlawanan tanda, yaitu +½ dan –½ . Tanda + menunjukkan putaran searah jarum jam dan tanda – arah sebaliknya perhatikan Gambar Adapun harga ½ , menyatakan fraksi elektron. B. Bentuk OrbitalBentuk orbital ditentukan oleh bilangan kuantum azimut. Bilangan kuantum ini diperoleh dari suatu persamaan matematika yang mengandung trigonometri sinus dan cosinus. Akibatnya, bentuk orbital ditentukan oleh bentuk trigonometri dalam memiliki bilangan kuantum azimut, A= 0 dan m= 0. Oleh karena nilai m sesungguhnya suatu tetapan tidak mengandung trigonometri maka orbital-s tidak memiliki orientasi dalam ruang sehingga orbital-s ditetapkan berupa bola simetris di sekeliling bola menyatakan peluang terbesar ditemukannya elektron dalam orbital-s. Hal ini bukan berarti semua elektron dalam orbital-s berada di permukaan bola, tetapi pada permukaan bola itu peluangnya tertinggi ≈ 99,99%, sisanya boleh jadi tersebar di dalam bola, lihat Gambar sOrbital-pOrbital-p memiliki bilangan kuantum azimut, A= 1 dan m= 0, ±l. Oleh karena itu, orbital-p memiliki tiga orientasi dalam ruang sesuai dengan bilangan kuantum magnetiknya. Oleh karena nilai m sesungguhnya mengandung sinus maka bentuk orbital-p menyerupai bentuk sinus dalam ruang, seperti ditunjukkan pada Gambar orbital-p memiliki bentuk yang sama, tetapi berbeda dalam orientasinya. Orbital-px memiliki orientasi ruang pada sumbu-x, orbital-py memiliki orientasi pada sumbu-y, dan orbital-pz memiliki orientasi pada sumbu-z. Makna dari bentuk orbital-p adalah peluang terbesar ditemukannya elektron dalam ruang berada di sekitar sumbu x, y, dan z. Adapun pada bidang xy, xz, dan yz, peluangnya memiliki bilangan kuantum azimut A = 2 dan m = 0, ±1, ±2. Akibatnya, terdapat lima orbital-d yang melibatkan sumbu dan bidang, sesuai dengan jumlah bilangan kuantum magnetiknya. Orbital-d terdiri atas orbital- 2 dz , orbital- xz d , orbital- xy d , orbital- yz d , dan orbital- −2 2 dx y perhatikan Gambar dxy, dxz, dyz, dan −2 2 dx y memiliki bentuk yang sama, tetapi orientasi dalam ruang berbeda. Orientasi orbital-dxy berada dalam bidang xy, demikian juga orientasi orbital-orbital lainnya sesuai dengan tandanya. Orbital −2 2 dx y memiliki orientasi pada sumbu x dan sumbu y. Adapun orbital 2 dz memiliki bentuk berbeda dari keempat orbital yang orbital ini berada pada sumbu z dan terdapat “donat” kecil pada bidang-xy. Makna dari orbital-d adalah, pada daerah-daerah sesuai tanda dalam orbital xy, xz, yz, x2 –y2 , z2 menunjukkan peluang terbesar ditemukannya elektron, sedangkan pada simpul-simpul di luar bidang memiliki peluang paling kecil. Bentuk orbital-f dan yang lebih tinggi dapat dihitung secara matematika,tetapi sukar untuk digambarkan atau diungkapkan kebolehjadiannya sebagaimana orbital-s, p, dan d. Kesimpulan umum dari hasil penyelesaian persamaan Schrodinger dapat dirangkum sebagai berikut C. Konfigurasi Elektron Atom PolielektronPersamaan Schrodinger hanya dapat diterapkan secara eksak untuk atom berelektron tunggal seperti hidrogen, sedangkan pada atom berelektron banyak tidak dapat utama pada atom berelektron banyak adalah bertambahnya jumlah elektron sehingga menimbulkan tarikmenarik antara elektron-inti dan tolak-menolak antara elektron-elektron semakin rumit. Oleh karena itu, untuk atom berlektron banyak digunakan metode pendekatan berdasarkan hasil penelitian dan teori para Energi OrbitalPada atom berelektron banyak, setiap orbital ditandai oleh bilangan kuantum n, A, m, dan s. Bilangan kuantum ini memiliki arti sama dengan yang dibahas sebelumnya. Perbedaannya terletak pada jarak orbital dari inti. Pada atom hidrogen, setiap orbital dengan nilai bilangan kuantum utama sama memiliki tingkat-tingkat energi sama atau terdegenerasi. Misalnya, orbital 2s dan 2p memiliki tingkat energi yang sama. Demikian pula untuk orbital 3s, 3p, dan atom berelektron banyak, orbital-orbital dengan nilai bilangan kuantum utama sama memiliki tingkat energi yang sedikit berbeda. Misalnya, orbital 2s dan 2p memiliki tingkat energi berbeda, yaitu energi orbital 2p lebih tinggi. Perbedaan tingkat energi elektron pada atom hidrogen dan atom berelektron banyak ditunjukkan pada Gambar tingkat energiPerbedaan tingkat energi ini disebabkan oleh elektron yang berada pada kulit dalam menghalangi elektron-elektron pada kulit bagian luar. Sebagai contoh, elektron pada orbital 1s akan tolak-menolak dengan elektron pada orbital-2s dan 2p sehingga orbital-2s dan 2p tidak lagi sejajar terdegenerasi seperti pada atom ini menyebabkan elektron-elektron dalam orbital-2s memiliki peluang lebih besar ditemukan di dekat inti daripada orbital-2p orbital-2s lebih dekat dengan inti.Distribusi Elektron dalam AtomKulit terdiri atas subkulit yang berisi orbital-orbital dengan bilangan kuantum utama yang sama. Jumlah orbital dalam setiap kulit dinyatakan dengan rumus n2 dan jumlah maksimum elektron yang dapat menempati setiap kulit dinyatakan dengan rumus 2n²contoh distribusi elektronSubkulit terdiri atas orbital-orbital yang memiliki bilangan kuantum azimut yang sama. Jumlah orbital, dalam setiap subkulit dinyatakan dengan rumus 2 A + 1. Oleh karena setiap orbital maksimum dihuni oleh dua elektron maka jumlah elektron dalam setiap subkulit dinyatakan dengan rumus 22 A + 1.Aturan dalam Konfigurasi ElektronPenulisan konfigurasi elektron untuk atom berelektron banyak didasarkan pada aturan aufbau, aturan Hund, dan prinsip larangan Pauli. Untuk menentukan jumlah elektron dalam atom, perlu diketahui nomor atom unsur Aturan Membangun AufbauAturan pengisian elektron ke dalam orbital-orbital dikenal dengan prinsip Aufbau bahasa Jerman, artinya membangun. Menurut aturan ini, elektron dalam atom harus memiliki energi terendah, artinya elektron harus terlebih dahulu menghuni orbital dengan energi terendah lihat diagram tingkat energi orbital pada Gambar tingkat energi orbital aufbauTingkat energi elektron ditentukan oleh bilangan kuantum utama. Bilangan kuantum utama dengan n = 1 merupakan tingkat energi paling rendah, kemudian meningkat ke tingkat energi yang lebih tinggi, yaitu n = 2, n = 3, dan seterusnya. Jadi, urutan kenaikan tingkat energi elektron adalah n = 1 < n = 2 < n =3 < … < n = n.Setelah tingkat energi elektron diurutkan berdasarkan bilangan kuantum utama, kemudian diurutkan lagi berdasarkan bilangan kuantum azimut sebab orbital-orbital dalam atom berelektron banyak tidak terdegenerasi. Berdasarkan bilangan kuantum azimut, tingkat energi terendah adalah orbital dengan bilangan kuantum azimut terkecil atau A= 0. Jadi, urutan tingkat energinya adalah s < p < d < f < [ A = n–1].Terdapat aturan tambahan, yaitu aturan n+ A. Menurut aturan ini, untuk nilai n+ A sama, orbital yang memiliki energi lebih rendah adalah orbital dengan bilangan kuantum utama lebih kecil,contoh2p 2+1 = 3 < 3s 3+0 =3, 3p 3+1 = 4 < 4s 4+0 =4, dan nilai n+ A berbeda maka orbital yang memiliki energi lebih rendah adalah orbital dengan jumlah n+ A lebih kecil,contoh4s 4+0 = 4 < 3d 3+2 =5.Dengan mengacu pada aturan aufbau maka urutan kenaikan tingkat energi elektron-elektron dalam orbital adalah sebagai < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < …b. Aturan HundAturan Hund disusun berdasarkan data spektroskopi atom. Aturan ini menyatakan sebagai elektron ke dalam orbital-orbital yang tingkat energinya sama, misalnya ketiga orbital-p atau kelima orbital-d. Oleh karena itu, elektron-elektron tidak berpasangan sebelum semua orbital dihuni. Elektron-elektron yang menghuni orbital-orbital dengan tingkat energi sama, misalnya orbital pz , px , py . Oleh karena itu, energi paling rendah dicapai jika spin elektron Prinsip Larangan PauliMenurut Wolfgang Pauli, elektron-elektron tidak boleh memiliki empat bilangan kuantum yang sama. Aturan ini disebut Prinsip larangan Pauli. Makna dari larangan Pauli adalah jika elektron-elektron memiliki ketiga bilangan kuantum n, A, m samamaka elektron-elektron tersebut tidak boleh berada dalam orbital yang sama pada waktu bersamaan. Akibatnya, setiap orbital hanya dapat dihuni maksimum dua elektron dan arah spinnya harus konsekuensi dari larangan Pauli maka jumlah elektron yang dapat menghuni subkulit s, p, d, f, …, dan seterusnya berturut-turut adalah 2, 6, 10, 14, …, dan seterusnya. Hal ini sesuai dengan rumus 22 A + 1Penulisan Konfigurasi ElektronUntuk menuliskan konfigurasi elektron, bayangkan bahwa inti atom memiliki tingkat-tingkat energi, dan setiap tingkat energi memiliki orbitalorbital yang masih kosong. Kemudian, elektron-elektron ditempatkan pada orbital-orbital sesuai dengan urutan tingkat energinya aturan Aufbau, dan tingkat energi paling rendah diisi terlebih orbital dengan tingkat energi sama, seperti px , py , pz , diusahakan tidak berpasangan sesuai aturan Hund, tempatnya boleh di mana saja, px , py , atau pz . Jika setelah masing-masing orbital dihuni oleh satu elektron masih ada elektron lain maka elektron ditambahkan untuk membentuk pasangan dengan spin setiap orbital maksimum dihuni oleh dua elektron, sesuai aturan Pauli perhatikan Gambar Penulisan konfigurasi elektron dapat diringkas sebab dalam kimia yang penting adalah konfigurasi elektron pada kulit terluar atau elektron valensi. Contoh konfigurasi elektron atom natrium dapat ditulis sebagai11Na [Ne] 3s1 .Lambang [Ne] menggantikan penulisan konfigurasi elektron bagian dalam10Ne 1s2 2s2 2p6 .

diagram tingkat energi atom berelektron banyak menurut aturan aufbau adalah